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Introduction

The geographic profiling problem is the problem of con-
structing an estimate for the location of the anchor point of
a serial offender from the locations of the offender’s crime
sites; see Rossmo (2000, p. 1). In this paper, we shall present
a mathematical survey of some of the algorithms that have
been used to solve the geographic profiling problem. We
will then present a new mathematical framework for the ge-
ographic profiling problem based on Bayesian methods that
is able to incorporate both geographic features that influence
the choice of a crime site as well as geographic features that
affect the location of the offender’s anchor point.

It has long been recognized that there are important re-
lationships between geography and crime, including serial
crime; we mention Brantingham and Brantingham (1993),
Canter and Larkin (1993) and Rossmo (2000). Today there
are a number of software packages being used to solve the ge-
ographic profiling problem. These include CrimeStat, devel-
oped by Ned Levine; Dragnet, developed by David Canter;
and Rigel, developed by Kim Rossmo. There have been sig-
nificant disagreements in the literature as to what is the best
methodology to evaluate the currently existing geographic
profiling software. See the original report prepared for NIJ
(Rich & Shively, 2004), the critique of Rossmo (2005a), and
the response of Levine (2005). There is also an ongoing
lively discussion in the literature as to whether or not com-
puter systems are as effective as simply providing humans
with some simple heuristics; see Snook, Canter, and Bennell
(2002), Snook, Taylor, and Bennell (2004), Rossmo (2005b)
and Snook, Taylor, and Bennell (2005b). We also have the
discussion in Snook, Taylor, and Bennell (2005a), Rossmo
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and Filer (2005), Bennell, Snook, and Taylor (2005), and
Rossmo, Filer, and Sesley (2005), as well as the papers of
Bennell, Snook, Taylor, Corey, and Keyton (2007) and of
Bennell, Taylor, and Snook (2007).

Given these and other controversies, we begin by enumer-
ating the characteristics we feel that a sound mathematical
algorithm for the geographic profiling should possess:

• The method should be logically rigorous;
• There should be explicit connections between assump-

tions on offender behavior and the components of the model;
• The method should be able to take into account local

geographic features; in particular, it should be able to ac-
count for geographic features that influence the selection of
a crime site and geographic features that influence the poten-
tial anchor points of offenders;
• The method should be based on data that is available to

the jurisdiction(s) where the offenses occur; and
• The method should return a prioritized search area for

law enforcement officers.

Ensuring that the algorithms are rigorous and explicit in
the connections between the assumptions on offender behav-
ior and components of the model will help in the analysis of
the model. In particular, it will give researchers another tool
for evaluating a model. As we have noted there is no con-
sensus as to the method(s) that should be used to evaluate the
effectiveness of a geographic profiling strategy. It is impor-
tant that the mathematics explicitly allows for the influence
of the local geography and demography. It is well known that
there are relationships between the physical environment and
crime rates; see for example Brantingham and Brantingham
(1993). It is essential that a good mathematical framework
has the ability to incorporate this information into the model.
However, it is equally important that the model use only data
that is available to the appropriate law enforcement agency.
Finally, we recognize that simple point estimates of offender
anchor points are not very valuable to practicing law enforce-
ment officers. Rather, to be useful to practitioners, a good
algorithm must produce prioritized search areas.



2 MIKE O’LEARY

Existing Methods
To begin our review of the current state of geographic pro-

filing, let us agree to adopt some common notation. A point
x will have two components x = (x(1), x(2)). These can be
latitude and longitude, or distances from a fixed pair of per-
pendicular reference axes. We presume that we are working
with a series of n linked crimes, and the crime sites under
consideration are labeled x1, x2, . . . , xn. We use the symbol z
to denote the offender’s anchor point. The anchor point can
be the offender’s home, place of work, or some other location
of importance to the offender.

We shall let d(x, y) denote the distance metric between the
points x and y. There are many reasonable choices for this
metric, including the Euclidean distance, the Manhattan dis-
tance, the total street distance following the local road net-
work or the total time to make the trip while following the
local road network.

Existing algorithms begin by first making a choice of dis-
tance metric d; they then select a decay function f and con-
struct a hit score function S (y) by computing

S (y) =

n∑
i=1

f (d(xi, y)) = f (d(x1, y)) + · · · + f (d(xn, y)). (1)

Regions with a high hit score are considered to be more likely
to contain the offender’s anchor point than regions with a
low hit score. In practice, the hit score S (y) is not evaluated
everywhere, but simply on some rectangular array of points
y jk = (y(1)

j , y
(2)
k ) for j ∈ {1, 2, . . . J} and k ∈ {1, 2, . . . ,K},

giving us the array of values S jk = S (y jk).
Rossmo’s method, as described in (Rossmo, 2000, Chap-

ter 10) chooses the Manhattan distance function for d and the
decay function

f (d) =

 k
dh if d < B,

kBg−h

(2B−d)g if d ≥ B.

We remark that Rossmo also considers the possibility of
forming hit scores by multiplication; see (Rossmo, 2000, p.
200)

The method described in Canter, Coffey, Huntley, and
Missen (2000) is to use a Euclidean distance, and to choose
either a decay function in the form

f (d) = e−βd

or functions with a buffer and plateau, with the form

f (d) =


0 if d < A,
B if A ≤ d < B,
Ce−βd if d ≥ B.

The CrimeStat program described in Levine (2009a) uses
Euclidean or spherical distance and gives the user a number
of choices for the decay function, including
• Linear: f (d) = A + Bd,

• Negative exponential: f (d) = Ae−βd,
• Normal: f (d) = A(2πS 2)−1/2 exp [−(d − d̄)2/2S 2],
• Lognormal: f (d) = A(2πd2S 2)−1/2 exp [−(ln d − d̄)2/2S 2],

and
• Truncated negative exponential: f (d) = Bd if d < C

and f (d) = Ae−βd if d ≥ C.
CrimeStat also allows the user to use empirical data to create
a different decay function matching a set of provided data as
well as the use of indirect distances.

Though each of these approaches are distinct, they share
the same underlying mathematical structure; they vary only
in the choice of decay function and the choice of distance
metric. We remark that the latest version (3.2) of CrimeS-
tat contains a new Bayesian Journey to Crime Module that
integrates information on the origin location of other offend-
ers who committed crimes in the same location with the dis-
tance decay estimates (Levine, 2009b). Levine and Block
tested this method with data from Baltimore County and
from Chicago (Levine & Block, 2010). See the introduction
to this special issue.

A New Mathematical Approach

We begin by looking for an appropriate model for offender
behavior and start with the simplest possible situation– where
we know nothing about the offender. Thus, we assume
that our offender chooses potential locations to offend ran-
domly according to some unknown probability density func-
tion P(x). For any geographic region R, the probability that
our offender will choose a crime site in R can be found by
adding up the values of P in R, giving us the probability!

R P(x) dx(1) dx(2).
At first glance, it may seem odd to use a probabilistic

model to describe human behavior. In fact, probabilistic
models are commonly used to describe many kinds of appar-
ently deterministic phenomena. For example, classical mod-
els of the diffusion of heat or chemical concentration can be
derived probabilistically; they also see application in mod-
els of the stock market (Baxter & Rennie, 1996), (Wilmott,
1998), (Wilmott, Howison, & Dewynne, 1995), in models of
population genetics (Ewens, 2004), and in many other mod-
els (Beltrami, 1993).

More precisely, the probability density function P repre-
sents our knowledge of the behavior of the offender. We use a
probability distribution, not because the offender’s decision
has a random component, although it may. Rather, we use
a probability density because we lack complete information
about the offender. Indeed, consider the following thought
experiment. If we want to model the flip of a coin, we use
probability and assume that each side of the coin is apt to
occur half the time. Now instead of flipping the coin, let us
take the coin to a colleague and ask them to choose a side. In
this case the outcome is the deliberate result of a decision by
an individual. However without knowing more information
about our colleague’s preferences, the best choice to model
the outcome of that experiment is still the use of a probability
distribution.

Returning to our model of offender behavior, we begin
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with a question: upon what sorts of variables should our
probability density function P depend? One of the funda-
mental assumptions of geographic profiling is that the choice
of an offender’s target locations is influenced by the location
of the offender’s anchor point z. Therefore, we assume that
P depends upon z. Underlying this approach are the require-
ments that the offender has a single anchor point and that it
is stable during the crime series.

A second important factor is the distance our offender is
willing to travel to commit a crime. Let α denote the average
distance that our offender is willing to travel to offend. We
allow for the possibility that this value varies between offend-
ers. Combining these, we assume that there is a probability
density function P(x | z, α) for the probability that an offender
with a single stable anchor point z and average offense dis-
tance α commits a crime at the location x.

We assume that this model is local to the jurisdiction un-
der consideration. In particular, we explicitly allow for the
possibility that different models P(x | z, α) may need to be
chosen for different jursidictions.

The key mathematical point is that the unknown is now
the entire distribution P(x | z, α), rather than just the anchor
point z. On its face, it seems a step backwards, but in fact, it
is not. Indeed, let us suppose that the form of the distribution
P is known, but that the values of the anchor point z and
average offense distance α are unknown. Then the problem
can be stated mathematically as, given a sample x1, x2, . . . , xn
(the crime site locations) from the distribution P(x | z, α) with
parameters z and α to determine the best way to estimate the
parameter z (the anchor point).

For the moment, let us set aside the question of what rea-
sonable choices can be made for the form of the distribution
P(x | z, α), and focus on how we can estimate the anchor point
z from our knowledge of the crime locations x1, . . . , xn.

It turns out that this is a well studied mathematical prob-
lem. One approach is to use the maximum likelihood estima-
tor. To do so, one first forms the likelihood function:

L(y, a) =

n∏
i=1

P(xi | y, a) = P(x1 | y, a) · · · P(xn | y, a).

Then the maximum likelihood estimates ẑmle and α̂mle are the
values of y and a that make L as large as possible. Equiva-
lently, one can maximize the log-likelihood function

λ(y, a) =

n∑
i=1

ln P(xi | y, a) = ln P(x1 | y, a)+· · ·+ln P(xn | y, a).

Though rigorous, this approach is unsuitable as simple point
estimates for the offender’s anchor point are not operationally
useful. Instead, we continue our analysis by using Bayes’
Theorem.

Bayesian Analysis
To see how Bayesian methods can be applied to geo-

graphic profiling, we begin with the simplest case where the
offender has only committed one crime at the location x. We

would like to use the information from this crime location
to form an estimate for the probability distribution for the
anchor point z. Bayes’ Theorem gives us the estimate

P(z, α | x) =
P(x | z, α)π(z, α)

P(x)
(2)

(Carlin & Louis, 2000; Casella & Berger, 2002). Here
P(z, α | x) is the posterior distribution, which gives the proba-
bility density that the offender has anchor point z and average
offense distance α, given that the offender has committed a
crime at the location x.

The term P(x) is the marginal distribution. The important
thing to note is that it is independent of z and α, therefore it
can be ignored provided we replace the equality in (2) with
proportionality.

The term π(z, α) is the prior distribution. It represents our
knowledge of the probability density that the offender has an-
chor point z and average offense distance α before we incor-
porate any information about the crime series. One approach
to the prior is to assume that the anchor point z is mathemat-
ically independent of the average offense distance α. In this
case, we can factor to obtain

π(z, α) = H(z)π(α) (3)

where H(z) is the prior probability density function for the
distribution of anchor points before any information from
the crime series is included and π(α) is the probability den-
sity function for the prior distribution of the offender’s aver-
age offense distance, again before any information from the
crime series is included.

Combining these, we then obtain the expression

P(z, α | x) ∝ P(x | z, α)H(z)π(α).

Of course, we are interested in crime series, and we would
like to estimate the probability density for the anchor point z
given our knowledge of all of the crime locations x1, . . . , xn.
To do so, we proceed in a similar fashion; now Bayes’ Theo-
rem implies

P(z, α | x1, . . . , xn) =
P(x1, . . . , xn | z, α)π(z, α)

P(x1, . . . , xn)
.

Here P(z, α | x1, . . . , xn) is again the posterior distribution,
which gives the probability density that the offender has
anchor point z and average offense distance α, given that
the offender has committed a crime at each of the locations
x1, . . . , xn. The marginal P(x1, . . . , xn) remains independent
of z and α, and can be ignored; the prior π can be handled by
(3). Then

P(z, α | x1, . . . , xn) ∝ P(x1, . . . , xn | z, α)H(z)π(α). (4)

The factor P(x1, . . . , xn | z, α) on the right side is the joint
probability that the offender committed crimes at all of the
locations x1, . . . , xn given that they had anchor point z and
average offense distance α. The simplest assumption we can
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make is that all of the offense sites are mathematically inde-
pendent; then we have the reduction

P(x1, . . . , xn | z, α) = P(x1 | z, α) · · · P(xn | z, α). (5)

Substituting this into (4) gives

P(z, α | x1, . . . , xn) ∝ P(x1 | z, α) · · · P(xn | z, α)H(z)π(α).

Finally, since we are only interested in the location of the
anchor point z, we take the conditional distribution to obtain
our fundamental mathematical result:

P(z | x1, . . . , xn) ∝
∫

P(x1 | z, α) · · · P(xn | z, α)H(z)π(α) dα.

(6)
The expression P(z | x1, . . . , xn) gives us the probability den-
sity that the offender has anchor point z given that they have
committed crimes at the location x1, . . . , xn. Because we
are calculating probabilities, this immediately provides us a
rigorous search area for the offender. Indeed regions with
larger values of P(z | x1, . . . , xn) by definition are more likely
to contain the offender’s anchor point than regions where
P(z | x1, . . . , xn) is lower.

This is a very general framework for the geographic pro-
filing problem. There are many choices for the model of
offender behavior P(x | z, α), and we will later examine a
number of reasonable choices. Though the preceding used a
model for offender behavior with one parameter α other than
the anchor point, the mathematics continues to hold with ele-
mentary modifications if we either add additional parameters
or remove the parameter α.

In addition to an assumption as to the form of P(x | z, α),
we have made two other fundamental assumptions. One is
that the prior for z is independent of the prior for α. This
is a reasonable first assumption, and it is what allows us the
factorization in (3). Its significance is that we are assuming
that the average distance that the offender is willing to travel
is independent of the offender’s anchor point. This is prob-
ably most appropriate in urban areas and for regions where
offenders travel short distances to offend. On the other hand,
the assumption may be less valid for example, in a town sur-
rounded by a less populated rural area. If potential offense
locations are concentrated in the town, then offenders with
anchor points far from the town will likely have a higher av-
erage offense distance than offenders with anchor points in
town.

The remaining fundamental assumption is that the of-
fender’s choice of crime sites are independent; this is nec-
essary for the factorization in (5). It can be replaced by other
assumptions, but would require a different model for the joint
distribution than the simple expression in (5). Though rea-
sonable as a first assumption, there is evidence of deviation
from independence in the literature. For example Kocsis,
Cooksey, Irwin, and Allen (2002) found in their analysis of
58 multiple burglary cases in rural Australia that the crime
sites tended to lie in narrow corridors emanating from the
offenders anchor point. Meaney (2004) examined 83 bur-
glary series, 23 sexual offense series, and 21 arson series; she

found that the first offense occurred closer to the offender’s
home than the last offense, suggesting that there is a tempo-
ral component to offender’s site selection. On the other hand,
Laukkanen and Santtila (2006) concluded that the distance a
robber travels to offend did not increase as the crime series
progressed. We also mention Ratcliffe (2006) who examined
some of the interrelation between temporal data and routine
activity theory.

Simple Models for Offender
Behavior

If our fundamental mathematical result is to have any
practical or investigative value, we need to be able to con-
struct reasonable choices for our model of offender behavior.
One simple model is to assume that the offender chooses a
target location based only on the Euclidean distance from the
offense location to the offender’s anchor point and that this
distribution is normal. In this case we obtain

P(x | z, α) =
1

4α2 exp
(
−

π

4α2 |x − z|2
)
. (7)

If we make the prior assumptions that all offenders have the
same average offense distance α and that all anchor points
are equally likely, then

P(z | x1, . . . , xn) =

(
1

4α2

)n

exp

− π

4α2

n∑
i=1

|xi − z|2
 .

We see that the posterior anchor point probability distribution
is just a product of normal distributions, one centered at each
crime site; compare this to sums used in the calculation of
hit scores (1). We also mention that in this model of offender
behavior, the maximum likelihood estimate for ‘the anchor
point is simply the mean center of the crime site locations;
this is also the mode of the posterior anchor point probability
distribution P(z | x1, . . . , xn).

Another reasonable choice of a model for offender behav-
ior is to assume that the offender chooses a target location
based only on the Euclidean distance from the offense loca-
tion to the offender’s anchor point, but that now the distribu-
tion is a negative exponential so that

P(x | z, α) =
2
πα2 exp

(
−

2
α
|x − z|

)
. (8)

Once again, if our prior assumptions are that all offenders
have the same average offense distance and that all anchor
points are equally likely, then

P(z | x1, . . . , xn) =

(
2
πα2

)n

exp

− 2
α

n∑
i=1

|xi − z|
 .

We see that this is just a product of negative exponentials
centered at each crime site. Further, the corresponding max-
imum likelihood estimate for the offender’s anchor point is
simply the center of minimum distance for the crime se-
ries locations. Finally, if we construct the function S̃ (z) =
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ln P(z | x1, . . . , xn), then S̃ is a hit score in the same form as
(1) with a linear decay function f and Euclidean distance d.

This preceding analysis was predicated on the assumption
that all offenders have the same average offense distance α
and that this was known in advance. Similarly, the existing
hit score methods all rely on decay functions f with one or
more parameters that also need to be determined in advance.
Unlike the hit score techniques however, our method does
not require that we make a choice for the parameter α in ad-
vance. For example, if we assume only that the offender has
a distance decay in the form (7) (or in the form (8)), with α
unknown, then the maximum likelihood technique will esti-
mate both the anchor point z and the average offense distance
α. Our fundamental mathematical result (6) also does not re-
quire that the parameter α be determined in advance, though
it does require a prior estimate π(α) for the distribution of
average offense distances.

More Realistic Models for
Offender Behavior

These simple models for offender behavior show that our
framework recaptures many existing geographic profiling
techniques; however, this new method is more general and
allows us a simple way to incorporate geographic features
into the model. Indeed, let us suppose that offender target
selection depends on more than just the distance from the
anchor point to the crime site locations, but that it depends
on some features in the local geography. One way to account
for this is to suppose that the offense probability density is
proportional to both a distance decay term and to a function
that measures the attractiveness of a particular target loca-
tion. Doing so, we obtain the following expression

P(x | z, α) = D(d(x, z), α)G(x)N(z). (9)

Here the factor D models the effect of distance decay using
the distance metric d(x, z). For example, we can specify a
normal decay, so that

D(d, α) =
1

4α2 exp
(
−

π

4α2 d2
)
.

We could also specify a negative exponential decay, so

D(d, α) =
2
πα2 exp

(
−

2
α

d
)
,

but of course there are many other reasonable possibilities.
One of the consequences of this approach to distance de-

cay is that it assumes uniformity of travel direction with re-
spect to the given distance metric; in this way it simplifies ac-
tual travel behavior. It may be the case that certain directions
are preferred by the offender; for example when searching for
potential targets, the offender may prefer to move closer to an
urban area than farther away. A new approach to the mod-
eling this distance decay effect is the kinetic random walk
model of Mohler and Short (2009).

The factor G(x) is used to account for the local geographic
features that influence the selection of a crime site. High

values for G(x) indicate that x is a likely target for typical
offenders; low values indicate x is a less likely target.

The remaining factor N is a normalization required to en-
sure that P is a probability distribution. Its value is com-
pletely determined by the choices of D and G and has the
form

N(z) =
1!

D(d(y, z), α)G(y)dy(1)dy(2)
.

Returning to the influence of geography on target selec-
tion, one simple example of G(x) is to account for juris-
dictional boundaries. Suppose that all known crimes in the
series must occur in a region J. The offender can commit
crimes outside J; but these are presumed unknown to the an-
alyst; the offender’s anchor point may also reside outside the
region J. We can account for this with the simple model

G(x) =

{
1 if x ∈ J,
0 if x < J.

In practice, the region J corresponds to one or more jurisdic-
tions sharing information about the offender’s crime series.

The incorporation of this very simple geographic informa-
tion has some surprising consequences. In particular, the al-
gorithm is able to distinguish between areas where no crimes
in the series have occurred (inside J) from areas where there
is no information as to whether or not a crime in the series
may have occurred (outside J). For example, suppose that
the elements of a hypothetical crime series are all near the
southern boundary of a jurisdiction J. Then the algorithm
will return a search area skewed to the south of the crime
series because the algorithm “knows” that no known crimes
take place north of the series, but that there may be crimes to
the south of the series that are unknown to the analyst; thus
the offender is more likely to live south of the series than to
the north. As a consequence, this model does not suffer from
the convex hull effect described by Levine (2005).

This simple approach to geographic information affecting
the selection of the target is primarily illustrative; clearly
a better model can be chosen. To do so, one approach
would be to use available geographic and demographic data
and the correlations between crime rates and these variables
that have already been published to construct an appropriate
choice for G(x). However, this approach has a number of
issues. First, is the fact that different crime types have dif-
ferent etiologies; in particular their relationship to the local
geographic and demographic backcloth depends strongly on
the particular type of crime. This would limit the method
to only those crimes where this relationship has been well
studied. Moreover, even for well studied crimes, there are re-
gional differences. Indeed, Tseloni, Wittebrood, Farrel, and
Pease (2004) noted that increased household affluence indi-
cated higher burglary rates in Britain, and indicated lower
burglary rates in the U.S.

The primary issue here is that this approach posits a
method to explain crime rates by looking for explanatory
variables. However, from the perspective of geographic pro-
filing, it is unnecessary to explain; instead we can simply ac-
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knowledge these differences, and work on measuring the re-
sulting differences. Rather than look at the local geographic
variables, we can use historical data to model the geographic
target attractiveness.

In particular, let us assume that historical crime rates are
reasonable predictors of the likelihood that a particular re-
gion will be the site of an offense. Then, given a crime se-
ries that we wish to analyze, we require a representative list
of historically committed crimes of the same type. Clearly,
this process requires the presence of a skilled analyst to de-
termine which historical crimes are of the same type as the
series under consideration. As an example, when looking at
a series of street robberies, it is likely that the geographic
distribution of street robbery rates are different for daylight
robberies as opposed to late night robberies. This approach
then inserts the crime analyst and their relevant real world
experience directly into the modeling process and the algo-
rithm. This approach also lets us handle different crime types
within the same mathematical framework, as different crime
types will have different historical patterns. Of course, the
local analyst will need to have access to the necessary data.

Once we have the historical data, we need to estimate the
target density function G(x). Perhaps the simplest method is
kernel density parameter estimation. To use this method, let
us suppose that we have a representative list of the crimes
of a given type and that they have occurred at the points
c1, c2, . . . , cN . Choose a kernel density function K(y | λ) with
bandwidth λ. There are a number of reasonable choices for
the kernel density function K, including normal or truncated
quartic. It turns out that the mathematical properties of this
method do not depend strongly on the mathematical form of
the kernel, but that they do depend on the bandwidth of the
kernel (Silverman, 1986). The bandwidth λ of a given ker-
nel is related to the width of the function; as an example the
bandwidth of a normal curve is the variance of that normal;
when using a truncated quartic, the bandwidth is the size of
the interval for which the quartic is nonzero.

We then construct the local target attractiveness function
by calculating

G(x) =

N∑
i=1

K(x − ci | λ) (10)

for a reasonable choice of bandwidth λ, say the mean near-
est neighbor distance between historical crime sites. This
is essentially the same as one of the methods used to gen-
erate crime hot spots described in Chainey (2005). Similar
techniques are used in mathematical biology to estimate the
home range of an animal species based on observations on
individuals in the environment (Worton, 1989).

Once we have selected a model for offender behavior
P(x | z), we also need to make a choice for the prior prob-
ability density for offender anchor points H(z) and the prior
distribution of the offender’s average offense distance π(α)
before we can use our fundamental result (6).

The prior probability density for offender anchor points
H(z) represents our knowledge of the offender’s anchor point

before we use any of the information from the crime se-
ries itself. There are a number of mathematically and crim-
inologically reasonable choices for this prior distribution.
The simplest choice would be to assume all potential anchor
points are equally likely; we can do this by simply choosing
H(z) = 1.

Before we examine more sophisticated priors, we return
to the question of what is an anchor point. If we assume that
the anchor point is the offender’s home, or more generally
that the distribution of anchor points follows local population
density, then we can use demographic data to generate an es-
timate for the prior. In this case, we we can choose H(z) so
that it is proportional to local population density. U.S. Cen-
sus data gives population counts at the block level together
with the land area of the block. We can use this data and ker-
nel density parameter estimation technique to generate H(z)
by calculating

H(z) =

Nblocks∑
i=1

= piK(z − qi |
√

Ai)

where each block has population pi, center qi and for each
block we have chosen a different bandwidth equal to the side
length of a square with the same area Ai as the block. We
mention that U.S. Census population data at the block level
is also available sorted by age, sex, and race/ethnic group.
Thus, if demographic information is available about the of-
fender, then this information can be incorporated when the
prior distribution of anchor points H(z) is calculated.

Our framework does not require that the anchor point be
the offender’s home or that the distribution of anchor points
follows local population density. Another reasonable ap-
proach to calculating H(z) would be to begin with the an-
chor points of previous offenders who have committed sim-
ilar crimes. Then the same kernel density process used to
generate G(x) in (10) can be used to generate H(z). These
historical anchor points can be determined on an offender-
by-offender basis; they can be homes, places of work or even
the offender’s favorite bar. Recall however that one of our
assumptions is that each offender has a unique stable anchor
point.

The last element needed to implement our fundamental
mathematical result is some estimate of the prior distribution
of the average distance to crime. Estimates of these types
of distance to crime distributions are commonly performed
by choosing a common statistical function and using best fit
estimates; see Levine (2009a, Chapter 10) for an example
of the process. However, our framework does not require a
particular parametrized form for the prior distribution π(α);
we can instead directly use appropriate empirical data in the
construction. Further, there is no requirement that the same
choice of π(α) needs to be made for different crime types.
Again, an analyst can choose which historical data to use
when generating π(α).

Prototype software that implements this framework has
been developed and released to for public use and evaluation.
Empirical tests are being arranged to evaluate the accuracy
and precision of this approach.



THE MATHEMATICS OF GEOGRAPHIC PROFILING 7

Future Offense Prediction
The focus of our attention so far has been on the tradi-

tional geographic profiling problem of estimating the loca-
tion of the offender’s anchor point by using the geograhphic
information contained in the crime series. However, this is
not the only question of interest to law enforcement. Indeed,
another question of nearly equal importance is to estimate
the location of the serial offender’s next target.

This question can be posed in the following mathematical
form. Given a series of crimes at the locations x1, x2, . . . , xn
committed by a single serial offender, estimate the probabil-
ity density P(xnext | x1, x2, . . . , xn), that xnext will be the lo-
cation of the next offense. The Bayesian approach to this
problem is to calculate the posterior predictive distribution

P(xnext | x1, x2, . . . , xn)

=

$
P(xnext | z, α)P(z, α | x1, x2, . . . , xn) dz(1) dz(2) dα.

Once again, we can use (4) and (5) to simplify, and so obtain
the expression

P(xnext | x1, x2, . . . , xn)

∝

$
P(xnext | z, α)P(x1 | z, α)P(x2 | z, α) . . .

P(xn | z, α)H(z)π(α) dz(1) dz(2) dα

This approach makes the same independence assumptions
about offender behavior as our fundamental result (6).
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